metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Carbonylchloridobis[dicyclohexyl-(4-isopropylphenyl)phosphane]rhodium(I) acetone monosolvate

Sizwe Makhoba, Alfred Muller,* Reinout Meijboom and **Bernard Omondi**

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: mullera@uj.ac.za

Received 26 July 2011; accepted 17 August 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.030; wR factor = 0.059; data-to-parameter ratio = 21.0.

The title rhodium Vaska-type complex, trans-[RhCl- $\{P(C_6H_{11})_2(C_6H_4-4-C_3H_7)_2\}_2(CO)\}$, crystallizes with an accompanying acetone solvent molecule. The metal atom shows a distorted square-planar coordination environment with selected important geometrical parameters of Rh-P =2.3237 (6) and 2.3253 (6) Å, Rh-Cl = 2.3724 (6) Å, Rh-C $= 1.802 (2) \text{ Å}, \text{ P}-\text{Rh}-\text{P} = 173.42 (2)^{\circ} \text{ and } \text{Cl}-\text{Rh}-\text{C} =$ 179.13 (7)°. Effective cone angles for the two P atoms are 165 and 161°, respectively. Both isopropyl groups and the acetone molecule are disordered with occupancy values of 0.523 (5):0.477 (5), 0.554 (8):0.446 (8) and 0.735 (4):0.265 (4), respectively. The crystal packing is stabilized by weak C- $H \cdots O$ and $C - H \cdots Cl$ contacts.

Related literature

For examples of the packing disorder observed in Vaska-type complexes of Rh, Ir, Pd and Pt, see: Chen et al. (1991), Kuwabara & Bau (1994), Otto et al. (2000) and Otto (2001), respectively. For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003); Muller et al. (2006, 2008). For the related synthesis of the *trans*- $[IrCl(CO)(PPh_3)_2]$ complex, see: Collman *et al.* (1990). For background to cone angles, see Tolman (1977); Otto et al. (2000); Otto (2001). For background to the Cambridge Structural Database, see: Allen (2002).

Z = 8

Mo $K\alpha$ radiation

 $0.34 \times 0.24 \times 0.14~\text{mm}$

245346 measured reflections 11404 independent reflections

10089 reflections with $I > 2\sigma(I)$

 $\mu = 0.54 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.105$

Experimental

Crystal data

[RhCl(C21H33P)2(CO)]·C3H6O $M_{r} = 857.34$ Tetragonal, P4₃2₁2 a = 16.0130 (15) Åc = 35.557 (3) Å V = 9117.4 (15) Å³

Data collection

Bruker APEX DUO 4K CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.838, T_{\max} = 0.929$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.059$	$\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
11404 reflections	Absolute structure: Flack (1983),
544 parameters	4954 Friedel pairs
31 restraints	Flack parameter: -0.029 (17)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C131-H131···Cl	1.00	2.76	3.332 (2)	117
C221-H221···Cl	1.00	2.67	3.324 (2)	123
$C224 - H22E \cdots O1^{i}$	0.99	2.70	3.359 (3)	124
S	1 1 1			

Symmetry code: (i) $-y + \frac{1}{2}, x - \frac{1}{2}, z - \frac{1}{4}$.

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Thanks to the Research Academy for Undergraduates and the University of Johannesburg for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2392).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441-2442.
- Collman, J. P., Sears, C. T. Jr & Kubota, M. (1990). Inorg. Synth. 28, 92-94.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409-1411.
- Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794– 5801.
- Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.
- Otto, S. (2001). Acta Cryst. C57, 793-795.
- Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.
- Roodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121– 137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Acta Cryst. (2011). E67, m1286-m1287 [doi:10.1107/S1600536811033447]

trans-Carbonylchloridobis[dicyclohexyl(4-isopropylphenyl)phosphane]rhodium(I) acetone mono-solvate

S. Makhoba, A. Muller, R. Meijboom and B. Omondi

Comment

Metal complexes with the general formula *trans*-[$M(X)(Y)(L)_2$] (M = Ir(I), Rh(I), Pd(II), Pt(II); X = halogen or pseudo halogen; Y = carbonyl or halogen; L = tertiary group 15 ligand) often crystallize with the transition metal lying on a crystallographic centre of inversion resulting in a packing disorder of the X and Y moieties (Otto, 2001; Otto *et al.*, 2000; Chen *et al.*, 1991; Kuwabara & Bau, 1994). These Vaska type complexes are useful model complexes and provide several probing methods, *e.g.* NMR and IR, to investigate the steric and electronic effects of novel group 15 ligands (Roodt *et al.*, 2003; Muller *et al.*, 2006; Muller *et al.*, 2008). Presented here is the *trans*-[RhCl(CO){PCy₂(C₆H₄-4-C₃H₇}₂] complex, containing the first reported structure of this tertiary phosphane ligand (Allen, 2002; Cambridge Structural Database search, database accessed 10/06/2011).

The title compound (Fig. 1) crystallizes in the tetragonal space group $P4_32_12$ (Z=8). This results in molecules lying in general positions in the unit cell and hence no packing disorder of the Cl and CO moieties is observed. The asymmetric unit has one molecule of acetone situated centrally near the rhodium complex. The metal coordination environment is distorted. This is observed most prominently for the P2—Rh1—P1 angle of 173.42 (2)° (Rh1 is displaced 0.0698 (7) Å from the plane formed by P1, C01, P2 and Cl respectively; r.m.s. deviation of fitted atoms = 0.0575 Å). The Cl—Rh1—C01 angle of 179.18 (8)° appears unaffected as the chloride and carbonyl ligands are significantly less bulky than the tertiary phosphorus ligands. The distortion could possibly be attributed to packing effects induced by the isopropyl groups.

To determine the phosphorus ligand bulkiness, an adaptation of the well known Tolman cone angle model was used (Tolman, 1977). Instead of using a CPK model, the actual geometry from the crystal structure was taken to determine an 'effective cone angle' (Otto *et al.*, 2001). Two different cone angles of 165° and 161° were obtained for P1 and P2 respectively, indicating some flexibility of the substituents of this group 15 ligand. The difference in cone angles could possibly be attributed to interactions with the acetone solvate or packing effects induced by the isopropyl groups. Weak C—H…Cl/O interactions stabilize the crystal structure (see Table 1).

Experimental

The synthesis of the Rh-Vaska complex was adapted from the synthesis of the *trans*-[IrCl(CO)(PPh₃)₂] complex (see Collman *et al.*, 1990). [RhCl₃.xH₂O] (50 mg, 0.24 mmol, using the anhydrous basis for the molecular weight calculation) was dissolved in dimethylformamide (DMF) and then heated under reflux for approximately one hour. During this time the colour changed from red to yellow, signalling the formation of the [Rh(μ -Cl)(CO)₂]₂ dimer. The solution was then allowed to cool to room temperature and dicyclohexyl-4-isopropylphenyl phosphane (159 mg; 0.5 mmol), dissolved in DMF (3 cm³) was added drop wise while stirring. This was followed by the addition of ice to the mixture and a precipitate formed. The solution was then centrifuged and the precipitate collected. This was then worked up by washing with water, extracting with dichloromethane (10 cm³), and drying with MgSO₄ (*ca.* 4 g). The solution was then evaporated to give the Vaska complex

in powder form. This powder was then checked for purity (see characterization below) and single crystals suitable for data collection were obtained by slow evaporation from an acetone solution.

Analytical data: IR (CHCl₃), v(CO) = 1965 cm⁻¹. NMR: ³¹P {H} NMR (CDCl₃, 400 MHz) = δ 35.1 (*d*, ¹*J*_{Rh—P} = 123 Hz, 2P).

Refinement

All hydrogen atoms were positioned in geometrically idealized positions with C-H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}$, except for methyl where $U_{iso}(H) = 1.5U_{eq}$ was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as a fixed rotor. The structure refined to a final Flack parameter of -0.029 (17). The highest residual electron density of 0.58 e.Å⁻³ is 0.65 Å from C6B representing no physical meaning. Initial refinement of the data showed large displacements of isopropyl groups and the acetone solvate. Subsequent refinement cycles involved treatment of these parts to disordered refinement procedures. Geometrical (SADI) restraints were applied to isopropyl groups bonded to the phenyl rings (C114-C1A/B and C214-C4A/B), as well as to 1,2- and some 1,3- bond distances (C1A/B—C2A/B and C1A/B—C3A/B, C4A/B—C5A/B and C4A/B—C6A/B, C5A/ B—C6A/B) of the isopropyl moieties. Ellipsoid displacement (EADP) constraints were applied to disordered atom groups C1A/B, C2A/B, C4A/B, C5A/B and O2A/C9B. In the case of C6A/B ISOR had to be utilized. All restraints were applied with the default standard deviations, except for ISOR where 0.005 $Å^2$ was used. In each case a free variable was connected to the disordered parts and refined to add to unity. For both isopropyl moieties, the free variables refined to almost 50:50 ratio's (0.523 (5):0.477 (5) and 0.554 (8):0.446 (8) for isopropyls attached to C114 and C214 respectively). The free variable for the acetone solvate refined to a ratio of 0.735 (4):0.265 (4). The final refined model shows slightly large carbon Uea(max)/Uea(min) values, but was retained as these observations are primarily associated with the disordered parts.

Figures

Fig. 1. A view of the title compound showing the numbering scheme of atoms and displacement ellipsoids (drawn at a 30% probability level). Carbon atoms for the minor components of disordered parts are cyan colored. Hydrogen atoms have been omitted for clarity.

trans-Carbonylchloridobis[dicyclohexyl(4- isopropylphenyl)phosphane]rhodium(I) acetone monosolvate

Crystal data

 $[RhCl(C_{21}H_{33}P)_{2}(CO)] \cdot C_{3}H_{6}O$ $M_{r} = 857.34$ Tetragonal, $P4_{3}2_{1}2$ Hall symbol: P 4nw 2abw a = 16.0130 (15) Å

 $D_x = 1.249 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9890 reflections $\theta = 2.3-27.4^{\circ}$ $\mu = 0.54 \text{ mm}^{-1}$

<i>c</i> = 35.557 (3) Å	
$V = 9117.4 (15) \text{ Å}^3$	
Z = 8	
F(000) = 3648	

Data collection

Bruker APEX DUO 4K CCD diffractometer	11404 independent reflections
graphite	10089 reflections with $I > 2\sigma(I)$
Detector resolution: 8.4 pixels mm ⁻¹	$R_{\rm int} = 0.105$
φ and ω scans	$\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -21 \rightarrow 21$
$T_{\min} = 0.838, \ T_{\max} = 0.929$	$k = -21 \rightarrow 18$
245346 measured reflections	$l = -47 \rightarrow 46$

T = 100 KBlock, yellow

 $0.34 \times 0.24 \times 0.14 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.059$	$w = 1/[\sigma^2(F_o^2) + (0.0171P)^2 + 5.251P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.014$
11404 reflections	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
544 parameters	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
31 restraints	Absolute structure: Flack (1983), 4954 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.029 (17)

Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 15 s/ frame. A total of 3328 frames were collected with a frame width of 0.5° covering up to $\theta = 28.38^{\circ}$ with 99.7% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Rh1	0.296490 (11)	0.118541 (11)	0.226611 (5)	0.01316 (4)	
Cl	0.32709 (4)	0.14074 (4)	0.162099 (15)	0.02160 (12)	
C01	0.27320 (13)	0.10337 (14)	0.27571 (7)	0.0185 (4)	
01	0.25881 (11)	0.09525 (11)	0.30693 (5)	0.0270 (4)	
P1	0.19418 (3)	0.22135 (3)	0.224492 (15)	0.01422 (11)	
P2	0.40800 (3)	0.02650 (4)	0.232680 (15)	0.01409 (12)	
C1A	-0.1068 (6)	0.1425 (10)	0.3267 (3)	0.0219 (12)	0.523 (5)
H1A	-0.1169	0.081	0.3246	0.026*	0.523 (5)
C2A	-0.0880 (4)	0.1633 (5)	0.36763 (16)	0.0478 (13)	0.523 (5)
H2A1	-0.0387	0.1321	0.3759	0.072*	0.523 (5)
H2A2	-0.136	0.1479	0.3833	0.072*	0.523 (5)
H2A3	-0.0774	0.2233	0.3701	0.072*	0.523 (5)
C3A	-0.1871 (4)	0.1884 (6)	0.3156 (2)	0.063 (3)	0.523 (5)
H3A1	-0.1769	0.2488	0.3155	0.094*	0.523 (5)
H3A2	-0.2313	0.1753	0.3337	0.094*	0.523 (5)
H3A3	-0.2045	0.1705	0.2904	0.094*	0.523 (5)
C4A	0.3139 (5)	-0.2813 (5)	0.3295 (2)	0.0332 (16)	0.554 (8)
H4A	0.2528	-0.2766	0.3351	0.04*	0.554 (8)
C5A	0.337 (2)	-0.3567 (14)	0.3058 (5)	0.052 (2)	0.554 (8)
H5A1	0.3975	-0.3598	0.3032	0.078*	0.554 (8)
H5A2	0.3111	-0.3514	0.2809	0.078*	0.554 (8)
H5A3	0.3162	-0.4075	0.3181	0.078*	0.554 (8)
C6A	0.3706 (7)	-0.2919 (5)	0.3661 (2)	0.081 (3)	0.554 (8)
H6A1	0.376	-0.2378	0.3788	0.122*	0.554 (8)
H6A2	0.426	-0.312	0.3587	0.122*	0.554 (8)
H6A3	0.3446	-0.3322	0.3832	0.122*	0.554 (8)
C1B	-0.1148 (6)	0.1476 (11)	0.3223 (3)	0.0219 (12)	0.477 (5)
H1B	-0.1062	0.094	0.3362	0.026*	0.477 (5)
C2B	-0.1380 (5)	0.2143 (5)	0.35103 (18)	0.0478 (13)	0.477 (5)
H2B1	-0.0907	0.2241	0.3679	0.072*	0.477 (5)
H2B2	-0.1863	0.1954	0.3657	0.072*	0.477 (5)
H2B3	-0.1521	0.2663	0.3379	0.072*	0.477 (5)
C3B	-0.1887 (3)	0.1353 (4)	0.29552 (17)	0.0281 (14)	0.477 (5)
H3B1	-0.1974	0.1864	0.2809	0.042*	0.477 (5)
H3B2	-0.2391	0.1229	0.3101	0.042*	0.477 (5)
H3B3	-0.1768	0.0887	0.2784	0.042*	0.477 (5)
C4B	0.3469 (6)	-0.2804 (7)	0.3325 (3)	0.0332 (16)	0.446 (8)
H4B	0.405	-0.2868	0.3424	0.04*	0.446 (8)
C5B	0.331 (3)	-0.3593 (17)	0.3116 (7)	0.052 (2)	0.446 (8)
H5B1	0.3759	-0.3686	0.2934	0.078*	0.446 (8)
H5B2	0.2775	-0.3553	0.2984	0.078*	0.446 (8)
H5B3	0.3291	-0.4061	0.3294	0.078*	0.446 (8)
C6B	0.2968 (7)	-0.2656 (5)	0.3655 (2)	0.062 (3)	0.446 (8)
H6B1	0.2928	-0.3171	0.3802	0.093*	0.446 (8)
H6B2	0.2407	-0.2478	0.3578	0.093*	0.446 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H6B3	0.3227	-0.2218	0.3807	0.093*	0.446 (8)
C111	0.10397 (13)	0.20137 (14)	0.25449 (6)	0.0155 (4)	
C112	0.07887 (14)	0.11957 (15)	0.26091 (6)	0.0174 (5)	
H112	0.1091	0.0749	0.2498	0.021*	
C113	0.01013 (15)	0.10227 (15)	0.28339 (6)	0.0198 (5)	
H113	-0.006	0.0458	0.2873	0.024*	
C114	-0.03569 (15)	0.16564 (15)	0.30036 (6)	0.0199 (5)	
C115	-0.01049 (16)	0.24773 (16)	0.29398 (7)	0.0234 (5)	
H115	-0.0403	0.2922	0.3055	0.028*	
C116	0.05759 (14)	0.26562 (14)	0.27102 (7)	0.0200 (5)	
H116	0.0727	0.3221	0.2665	0.024*	
C121	0.23735 (14)	0.32196 (14)	0.24048 (6)	0.0187 (5)	
H121	0.1926	0.3653	0.2386	0.022*	
C122	0.26715 (17)	0.31755 (16)	0.28140 (7)	0.0261 (5)	
H12A	0.3082	0.2717	0.2841	0.031*	
H12B	0.2191	0.3052	0.298	0.031*	
C123	0.30747 (18)	0.40018 (16)	0.29338 (8)	0.0336 (7)	
H12C	0.2652	0.4452	0.2924	0.04*	
H12D	0.3274	0.3954	0.3196	0.04*	
C124	0.38058 (17)	0.42277 (16)	0.26785 (9)	0.0376 (7)	
H12E	0.4044	0.4771	0.2758	0.045*	
H12F	0.4248	0.3799	0.2702	0.045*	
C125	0.35206 (17)	0.42832 (16)	0.22722 (9)	0.0355 (7)	
H12G	0.4008	0.4398	0.2109	0.043*	
H12H	0.3123	0.4753	0.2245	0.043*	
C126	0.30983 (16)	0.34720 (16)	0.21440 (7)	0.0267 (6)	
H12I	0.3517	0.3018	0.2139	0.032*	
H12J	0.2883	0.3546	0.1885	0.032*	
C131	0.14855 (15)	0.24185 (14)	0.17773 (6)	0.0181 (5)	
H131	0.1961	0.2528	0.1602	0.022*	
C132	0.10437 (15)	0.16316 (15)	0.16354 (7)	0.0229 (5)	
H13A	0.1436	0.1154	0.1644	0.027*	
H13B	0.0566	0.1501	0.1802	0.027*	
C133	0.07292 (18)	0.17503 (18)	0.12330 (7)	0.0302 (6)	
H13C	0.1211	0.183	0.1062	0.036*	
H13D	0.0426	0.1242	0.1152	0.036*	
C134	0.01529 (18)	0.24991 (19)	0.12055 (8)	0.0333 (7)	
H13E	-0.036	0.2389	0.1353	0.04*	
H13F	-0.0012	0.2582	0.094	0.04*	
C135	0.05677 (17)	0.32905 (18)	0.13510 (7)	0.0309 (6)	
H13G	0.0158	0.3753	0.1348	0.037*	
H13H	0.1035	0.3444	0.1182	0.037*	
C136	0.09008 (16)	0.31768 (16)	0.17526 (7)	0.0245 (5)	
H13I	0.0426	0.3099	0.1928	0.029*	
H13J	0.1207	0.3686	0.183	0.029*	
C211	0.38831 (16)	-0.06260 (14)	0.26335 (6)	0.0184 (5)	
C212	0.30787 (17)	-0.09523 (15)	0.26457 (7)	0.0251 (5)	
H212	0.2647	-0.0697	0.2503	0.03*	
C213	0.2901 (2)	-0.16503 (17)	0.28653 (8)	0.0369 (7)	

H213	0.2348	-0.1864	0.2869	0.044*	
C214	0.3509 (2)	-0.20404 (17)	0.30784 (7)	0.0388 (8)	
C215	0.4306 (2)	-0.17083 (17)	0.30673 (7)	0.0347 (7)	
H215	0.4734	-0.196	0.3214	0.042*	
C216	0.44988 (17)	-0.10151 (16)	0.28472 (7)	0.0266 (6)	
H216	0.5054	-0.0806	0.2843	0.032*	
C221	0.44359 (15)	-0.02103 (15)	0.18819 (6)	0.0178 (5)	
H221	0.4465	0.0253	0.1694	0.021*	
C222	0.37912 (17)	-0.08287 (17)	0.17341 (7)	0.0269 (5)	
H22A	0.3234	-0.0562	0.1729	0.032*	
H22B	0.3763	-0.1319	0.1903	0.032*	
C223	0.40333 (18)	-0.1112 (2)	0.13367 (7)	0.0361 (7)	
H22C	0.3623	-0.1528	0.1246	0.043*	
H22D	0.4014	-0.0626	0.1165	0.043*	
C224	0.48995 (19)	-0.14917 (18)	0.13265 (8)	0.0337 (7)	
H22E	0.5053	-0.1616	0.1063	0.04*	
H22F	0.4897	-0.2025	0.1468	0.04*	
C225	0.55463 (18)	-0.09071 (18)	0.14967 (7)	0.0315 (6)	
H22G	0.5617	-0.0416	0.1331	0.038*	
H22H	0.609	-0.12	0.1511	0.038*	
C226	0.52968 (15)	-0.06103 (16)	0.18898 (7)	0.0231 (5)	
H22I	0.5294	-0.1091	0.2065	0.028*	
H22J	0.5711	-0.02	0.1982	0.028*	
C231	0.50106 (14)	0.07875 (15)	0.25216 (6)	0.0177 (4)	
H231	0.5474	0.037	0.2532	0.021*	
C232	0.52855 (15)	0.15070 (15)	0.22626 (8)	0.0233 (5)	
H23A	0.5418	0.1282	0.201	0.028*	
H23B	0.4821	0.191	0.2235	0.028*	
C233	0.60515 (16)	0.19557 (18)	0.24207 (7)	0.0302 (6)	
H23C	0.6534	0.157	0.2419	0.036*	
H23D	0.619	0.2438	0.2258	0.036*	
C234	0.59008 (17)	0.22631 (17)	0.28217 (8)	0.0320 (6)	
H23E	0.6418	0.2519	0.2921	0.038*	
H23F	0.5459	0.2695	0.282	0.038*	
C235	0.56370 (17)	0.15413 (18)	0.30758 (7)	0.0292 (6)	
H23G	0.6097	0.113	0.3093	0.035*	
H23H	0.5523	0.1755	0.3332	0.035*	
C236	0.48589 (15)	0.11165 (17)	0.29219 (6)	0.0236 (5)	
H23I	0.439	0.152	0.2919	0.028*	
H23J	0.4702	0.0646	0.3088	0.028*	
O2A	0.1421 (3)	0.9423 (2)	0.19253 (10)	0.0673 (12)	0.735 (4)
C7A	0.1229 (3)	0.9277 (3)	0.16044 (16)	0.0412 (12)	0.735 (4)
C8A	0.1729 (5)	0.9554 (5)	0.12697 (17)	0.0396 (14)	0.735 (4)
H8A1	0.2117	0.9996	0.1346	0.059*	0.735 (4)
H8A2	0.1352	0.9768	0.1075	0.059*	0.735 (4)
H8A3	0.2045	0.9079	0.117	0.059*	0.735 (4)
C9A	0.0460 (4)	0.8777 (4)	0.15197 (15)	0.0715 (19)	0.735 (4)
H9A1	0.0163	0.8655	0.1754	0.107*	0.735 (4)
H9A2	0.062	0.8252	0.1398	0.107*	0.735 (4)

H9A3	0.0095	0.9096	0.1352	0.107*	0.735 (4)
O2B	0.0178 (7)	0.9608 (7)	0.1191 (4)	0.079 (4)	0.265 (4)
C7B	0.0849 (11)	0.9422 (9)	0.1305 (4)	0.055 (4)	0.265 (4)
C8B	0.1651 (14)	0.9696 (15)	0.1112 (6)	0.052 (5)	0.265 (4)
H8B1	0.152	1.011	0.0918	0.079*	0.265 (4)
H8B2	0.192	0.921	0.0996	0.079*	0.265 (4)
H8B3	0.2029	0.9943	0.1298	0.079*	0.265 (4)
C9B	0.0960 (14)	0.8978 (12)	0.1642 (5)	0.0673 (12)	0.265 (4)
H9B1	0.0461	0.8643	0.1693	0.101*	0.265 (4)
H9B2	0.1052	0.9372	0.1849	0.101*	0.265 (4)
H9B3	0.1446	0.8609	0.1618	0.101*	0.265 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.01277 (8)	0.01424 (8)	0.01245 (7)	0.00271 (7)	0.00052 (7)	0.00092 (7)
Cl	0.0220 (3)	0.0260 (3)	0.0169 (2)	0.0078 (2)	0.0037 (2)	0.0048 (2)
C01	0.0141 (10)	0.0176 (11)	0.0238 (11)	0.0057 (8)	0.0006 (9)	-0.0003 (10)
01	0.0280 (10)	0.0342 (11)	0.0187 (8)	0.0082 (8)	-0.0009 (7)	0.0006 (8)
P1	0.0132 (3)	0.0138 (3)	0.0156 (2)	0.0022 (2)	0.0013 (2)	0.0018 (2)
P2	0.0141 (3)	0.0144 (3)	0.0137 (3)	0.0033 (2)	-0.0001 (2)	0.0007 (2)
C1A	0.0190 (18)	0.0212 (19)	0.026 (2)	-0.0022 (17)	0.0063 (16)	0.000 (2)
C2A	0.053 (3)	0.063 (4)	0.028 (2)	-0.029 (2)	0.022 (2)	-0.015 (2)
C3A	0.025 (3)	0.087 (6)	0.076 (5)	0.007 (4)	0.020 (3)	0.040 (5)
C4A	0.036 (5)	0.0222 (16)	0.041 (2)	-0.002 (4)	0.006 (4)	0.0106 (15)
C5A	0.062 (4)	0.023 (2)	0.070 (5)	-0.011 (2)	0.035 (6)	0.006 (3)
C6A	0.120 (5)	0.068 (4)	0.055 (4)	-0.028 (4)	-0.008 (4)	0.019 (3)
C1B	0.0190 (18)	0.0212 (19)	0.026 (2)	-0.0022 (17)	0.0063 (16)	0.000 (2)
C2B	0.053 (3)	0.063 (4)	0.028 (2)	-0.029 (2)	0.022 (2)	-0.015 (2)
C3B	0.013 (3)	0.035 (4)	0.036 (3)	-0.002 (2)	0.005 (2)	0.009 (3)
C4B	0.036 (5)	0.0222 (16)	0.041 (2)	-0.002 (4)	0.006 (4)	0.0106 (15)
C5B	0.062 (4)	0.023 (2)	0.070 (5)	-0.011 (2)	0.035 (6)	0.006 (3)
C6B	0.098 (5)	0.039 (4)	0.049 (4)	-0.022 (4)	0.030 (4)	0.009 (3)
C111	0.0139 (11)	0.0161 (10)	0.0166 (10)	0.0029 (9)	0.0000 (8)	0.0005 (9)
C112	0.0165 (11)	0.0163 (11)	0.0195 (11)	0.0004 (10)	-0.0016 (8)	-0.0016 (9)
C113	0.0205 (12)	0.0178 (12)	0.0209 (12)	-0.0030 (9)	-0.0013 (9)	-0.0003 (9)
C114	0.0178 (12)	0.0238 (13)	0.0181 (11)	-0.0036 (10)	0.0007 (9)	-0.0021 (10)
C115	0.0210 (13)	0.0206 (13)	0.0285 (14)	0.0021 (10)	0.0080 (11)	-0.0033 (10)
C116	0.0194 (11)	0.0141 (10)	0.0264 (13)	0.0010 (9)	0.0048 (10)	0.0020 (10)
C121	0.0171 (11)	0.0159 (11)	0.0232 (12)	0.0012 (9)	-0.0003 (9)	0.0010 (9)
C122	0.0281 (13)	0.0241 (14)	0.0260 (13)	-0.0015 (10)	-0.0024 (11)	-0.0043 (10)
C123	0.0318 (16)	0.0271 (15)	0.0418 (16)	-0.0017 (12)	-0.0069 (13)	-0.0126 (12)
C124	0.0234 (13)	0.0213 (13)	0.068 (2)	-0.0011 (11)	-0.0087 (15)	-0.0120 (13)
C125	0.0264 (14)	0.0218 (13)	0.0583 (19)	-0.0069 (11)	0.0057 (14)	0.0012 (14)
C126	0.0235 (13)	0.0226 (12)	0.0341 (14)	-0.0026 (11)	0.0064 (11)	0.0018 (11)
C131	0.0185 (11)	0.0190 (11)	0.0167 (11)	0.0043 (9)	-0.0008 (9)	0.0028 (9)
C132	0.0218 (13)	0.0259 (13)	0.0210 (12)	0.0001 (10)	-0.0047 (10)	0.0035 (10)
C133	0.0333 (15)	0.0368 (16)	0.0204 (13)	-0.0020 (12)	-0.0076 (11)	0.0022 (11)

C134	0.0254 (14)	0.0481 (18)	0.0264 (14)	-0.0014 (13)	-0.0078 (11)	0.0140 (13)
C135	0.0285 (14)	0.0363 (16)	0.0279 (14)	0.0082 (12)	-0.0014 (11)	0.0150 (12)
C136	0.0241 (13)	0.0234 (14)	0.0259 (12)	0.0075 (10)	0.0006 (10)	0.0058 (10)
C211	0.0259 (12)	0.0149 (10)	0.0143 (10)	0.0046 (10)	0.0021 (9)	-0.0009 (8)
C212	0.0321 (14)	0.0191 (12)	0.0243 (12)	-0.0009 (10)	0.0011 (11)	-0.0009 (9)
C213	0.0509 (18)	0.0256 (14)	0.0340 (15)	-0.0116 (14)	0.0071 (14)	0.0009 (12)
C214	0.077 (2)	0.0163 (12)	0.0235 (13)	0.0031 (15)	0.0115 (13)	0.0024 (11)
C215	0.056 (2)	0.0269 (15)	0.0211 (13)	0.0166 (14)	0.0005 (13)	0.0053 (11)
C216	0.0320 (14)	0.0267 (14)	0.0211 (12)	0.0085 (11)	0.0013 (10)	0.0015 (10)
C221	0.0194 (12)	0.0201 (12)	0.0140 (10)	0.0052 (9)	0.0001 (9)	0.0015 (9)
C222	0.0273 (13)	0.0334 (14)	0.0199 (12)	-0.0005 (12)	-0.0009 (11)	-0.0090 (10)
C223	0.0378 (16)	0.0497 (18)	0.0208 (13)	0.0098 (15)	-0.0035 (11)	-0.0149 (13)
C224	0.0454 (18)	0.0352 (16)	0.0205 (13)	0.0134 (13)	0.0011 (12)	-0.0077 (12)
C225	0.0325 (15)	0.0374 (16)	0.0246 (14)	0.0137 (12)	0.0034 (11)	-0.0052 (12)
C226	0.0192 (12)	0.0284 (14)	0.0217 (12)	0.0102 (10)	0.0003 (10)	-0.0027 (10)
C231	0.0131 (11)	0.0222 (13)	0.0177 (10)	0.0017 (8)	-0.0026 (9)	-0.0017 (9)
C232	0.0214 (12)	0.0223 (12)	0.0264 (12)	0.0009 (10)	0.0015 (11)	0.0020 (11)
C233	0.0208 (13)	0.0290 (14)	0.0406 (14)	-0.0049(11)	0.0043 (11)	0.0000 (12)
C234	0.0230 (13)	0.0268 (14)	0.0462 (17)	-0.0044(10)	-0.0034(12)	-0.0097(12)
C235	0.0245 (14)	0.0349 (16)	0.0283 (13)	-0.0004(11)	-0.0063(11)	-0.0098(12)
C236	0.0212(12)	0.0289 (13)	0.0207 (11)	-0.0014(11)	-0.0007(9)	-0.0065(11)
02A	0.093 (3)	0.058 (2)	0.050(2)	-0.015(2)	-0.015(2)	0.0039(17)
C7A	0.038(3)	0.020(2)	0.065(2)	-0.0081(18)	-0.003(2)	-0.006(2)
C8A	0.032(3)	0.021(2) 0.035(3)	0.052(2)	-0.003(2)	-0.006(3)	-0.007(3)
C9A	0.052(3)	0.035(5)	0.052(1)	-0.048(3)	0.026(3)	-0.032(3)
02B	0.047(6)	0.000(3)	0.129(11)	-0.014(5)	0.020(3)	-0.002(3)
C7B	0.072(11)	0.000(7)	0.054(9)	0.010(7)	0.010(8)	0.000 (6)
C8B	0.072(11)	0.053(11)	0.051(9)	0.010(7)	-0.001(11)	0.000(0)
C9B	0.040(3)	0.053(11) 0.058(2)	0.004(14)	-0.015(2)	-0.015(2)	0.010(10)
0,1	0.075 (5)	0.000 (2)	0.000 (2)	0.010 (2)	0.010 (2)	0.0000 (17)
Geometric par	ameters (Å, °)					
Rh1—C01		1.802 (2)	C131	—C136	1.53	6 (3)
Rh1—P1		2.3237 (6)	C131	—Н131	1	
Rh1—P2		2.3253 (6)	C132	—C133	1.52	29 (3)
Rh1—Cl		2.3724 (6)	C132	—H13A	0.99)
C01—O1		1.141 (3)	C132	—H13B	0.99)
P1—C111		1.824 (2)	C133	C134	1.51	6 (4)
P1-C121		1.843 (2)	C133	—Н13С	0.99)
P1—C131		1.846 (2)	C133	—H13D	0.99)
P2—C211		1.823 (2)	C134	C135	1.52	21 (4)
P2-C231		1.844 (2)	C134	—H13E	0.99)
P2—C221		1.846 (2)	C134	—H13F	0.99)
C1A—C114		1.519 (10)	C135	—C136	1.53	5 (3)
C1A—C2A		1.524 (10)	C135	—H13G	0.99)
C1A—C3A		1.534 (11)	C135	—Н13Н	0.99)
C1A—H1A		1	C136	—H13I	0.99)
C2A—H2A1		0.98	C136	—H13J	0.99)
C2A—H2A2		0.98	C211		1.39	91 (3)

C2A—H2A3	0.98	C211—C216	1.392 (3)
C3A—H3A1	0.98	C212—C213	1.393 (3)
СЗА—НЗА2	0.98	C212—H212	0.95
СЗА—НЗАЗ	0.98	C213—C214	1.383 (4)
C4A—C5A	1.517 (12)	С213—Н213	0.95
C4A—C214	1.575 (8)	C214—C215	1.383 (4)
C4A—C6A	1.594 (10)	C215—C216	1.393 (4)
C4A—H4A	1	С215—Н215	0.95
C5A—H5A1	0.98	С216—Н216	0.95
C5A—H5A2	0.98	C221—C226	1.520 (3)
С5А—Н5А3	0.98	C221—C222	1.524 (3)
C6A—H6A1	0.98	C221—H221	1
C6A—H6A2	0.98	C222—C223	1.534 (3)
С6А—Н6А3	0.98	C222—H22A	0.99
C1B—C114	1.515 (11)	С222—Н22В	0.99
C1B—C2B	1.524 (12)	C223—C224	1.515 (4)
C1B—C3B	1.532 (11)	С223—Н22С	0.99
C1B—H1B	1	C223—H22D	0.99
C2B—H2B1	0.98	C224—C225	1.522 (4)
C2B—H2B2	0.98	С224—Н22Е	0.99
C2B—H2B3	0.98	C224—H22F	0.99
C3B—H3B1	0.98	C225—C226	1.529 (3)
C3B—H3B2	0.98	C225—H22G	0.99
C3B—H3B3	0.98	С225—Н22Н	0.99
C4B—C6B	1.440 (11)	C226—H22I	0.99
C4B—C5B	1.486 (14)	С226—Н22Ј	0.99
C4B—C214	1.506 (10)	C231—C236	1.537 (3)
C4B—H4B	1	C231—C232	1.539 (3)
C5B—H5B1	0.98	С231—Н231	1
C5B—H5B2	0.98	C232—C233	1.529 (3)
C5B—H5B3	0.98	С232—Н23А	0.99
C6B—H6B1	0.98	С232—Н23В	0.99
C6B—H6B2	0.98	C233—C234	1.528 (4)
С6В—Н6В3	0.98	С233—Н23С	0.99
C111—C112	1.389 (3)	C233—H23D	0.99
C111—C116	1.398 (3)	C234—C235	1.527 (4)
C112—C113	1.388 (3)	С234—Н23Е	0.99
С112—Н112	0.95	C234—H23F	0.99
C113—C114	1.390 (3)	C235—C236	1.521 (3)
С113—Н113	0.95	C235—H23G	0.99
C114—C115	1.394 (3)	С235—Н23Н	0.99
C115—C116	1.392 (3)	C236—H23I	0.99
С115—Н115	0.95	C236—H23J	0.99
C116—H116	0.95	O2A—C7A	1.205 (6)
C121—C122	1.533 (3)	С7А—С9А	1.499 (6)
C121—C126	1.540 (3)	C7A—C8A	1.502 (8)
C121—H121	1	C8A—H8A1	0.98
C122—C123	1.533 (3)	C8A—H8A2	0.98
С122—Н12А	0.99	C8A—H8A3	0.98

С122—Н12В	0.99	С9А—Н9А1	0.98
C123—C124	1.525 (4)	С9А—Н9А2	0.98
C123—H12C	0.99	С9А—Н9АЗ	0.98
C123—H12D	0.99	O2B—C7B	1.186 (18)
C124—C125	1.518 (4)	С7В—С9В	1.40 (2)
C124—H12E	0.99	C7B—C8B	1.52 (3)
C124—H12F	0.99	C8B—H8B1	0.98
C125—C126	1.534 (3)	C8B—H8B2	0.98
C125—H12G	0.99	C8B—H8B3	0.98
С125—Н12Н	0.99	C9B—H9B1	0.98
C126—H12I	0.99	С9В—Н9В2	0.98
C126—H12J	0.99	С9В—Н9В3	0.98
C131—C132	1.531 (3)		
C01—Rh1—P1	88.91 (7)	C134—C133—C132	111.1 (2)
C01—Rh1—P2	89.06 (7)	C134—C133—H13C	109.4
P1—Rh1—P2	173.42 (2)	С132—С133—Н13С	109.4
C01—Rh1—Cl	179.13 (7)	C134—C133—H13D	109.4
P1—Rh1—Cl	90.47 (2)	C132—C133—H13D	109.4
P2—Rh1—Cl	91.49 (2)	H13C—C133—H13D	108
O1—C01—Rh1	178.8 (2)	C133—C134—C135	111.8 (2)
C111—P1—C121	105.66 (11)	С133—С134—Н13Е	109.3
C111—P1—C131	104.15 (10)	С135—С134—Н13Е	109.3
C121—P1—C131	105.72 (10)	C133—C134—H13F	109.3
C111—P1—Rh1	114.53 (7)	C135—C134—H13F	109.3
C121—P1—Rh1	110.17 (8)	H13E—C134—H13F	107.9
C131—P1—Rh1	115.75 (8)	C134—C135—C136	111.7 (2)
C211—P2—C231	105.67 (11)	C134—C135—H13G	109.3
C211—P2—C221	104.08 (10)	C136—C135—H13G	109.3
C231—P2—C221	105.04 (11)	С134—С135—Н13Н	109.3
C211—P2—Rh1	114.75 (8)	С136—С135—Н13Н	109.3
C231—P2—Rh1	111.58 (8)	Н13G—С135—Н13Н	107.9
C221—P2—Rh1	114.77 (7)	C135—C136—C131	111.0 (2)
C114—C1A—C2A	112.8 (7)	С135—С136—Н13І	109.4
C114—C1A—C3A	110.7 (9)	C131—C136—H13I	109.4
C2A—C1A—C3A	107.8 (8)	С135—С136—Н13Ј	109.4
C114—C1A—H1A	108.5	С131—С136—Н13Ј	109.4
C2A—C1A—H1A	108.5	H13I—C136—H13J	108
C3A—C1A—H1A	108.5	C212—C211—C216	118.1 (2)
C5A—C4A—C214	105.2 (14)	C212—C211—P2	118.22 (18)
C5A—C4A—C6A	103.4 (12)	C216—C211—P2	123.7 (2)
C214—C4A—C6A	105.6 (5)	C211—C212—C213	120.5 (3)
C5A—C4A—H4A	113.9	C211—C212—H212	119.7
C214—C4A—H4A	113.9	C213—C212—H212	119.7
С6А—С4А—Н4А	113.9	C214—C213—C212	121.7 (3)
C114—C1B—C2B	114.6 (10)	C214—C213—H213	119.1
C114—C1B—C3B	110.5 (8)	С212—С213—Н213	119.1
C2B—C1B—C3B	108.5 (9)	C213—C214—C215	117.4 (3)
C114—C1B—H1B	107.7	C213—C214—C4B	131.0 (5)
C2B—C1B—H1B	107.7	C215—C214—C4B	111.6 (5)

C3B—C1B—H1B	107.7	C213—C214—C4A	111.0 (4)
C1B-C2B-H2B1	109.5	C215—C214—C4A	131.6 (4)
C1B—C2B—H2B2	109.5	C214—C215—C216	121.8 (3)
H2B1—C2B—H2B2	109.5	C214—C215—H215	119.1
C1B—C2B—H2B3	109.5	C216—C215—H215	119.1
H2B1—C2B—H2B3	109.5	C211—C216—C215	120.4 (3)
H2B2—C2B—H2B3	109.5	C211—C216—H216	119.8
C1B—C3B—H3B1	109.5	С215—С216—Н216	119.8
C1B—C3B—H3B2	109.5	C226—C221—C222	110.3 (2)
H3B1—C3B—H3B2	109.5	C226—C221—P2	115.98 (16)
C1B—C3B—H3B3	109.5	C222—C221—P2	110.75 (17)
H3B1—C3B—H3B3	109.5	C226—C221—H221	106.4
H3B2—C3B—H3B3	109.5	C222—C221—H221	106.4
C6B—C4B—C5B	116.8 (16)	P2—C221—H221	106.4
C6B—C4B—C214	111.3 (8)	C221—C222—C223	109.8 (2)
C5B—C4B—C214	114.0 (17)	C221—C222—H22A	109.7
C6B—C4B—H4B	104.4	C223—C222—H22A	109.7
C5B—C4B—H4B	104.4	C221—C222—H22B	109.7
C214—C4B—H4B	104.4	C223—C222—H22B	109.7
C4B—C5B—H5B1	109.5	H22A—C222—H22B	108.2
C4B—C5B—H5B2	109.5	C224—C223—C222	111.8 (2)
H5B1—C5B—H5B2	109.5	C224—C223—H22C	109.2
C4B—C5B—H5B3	109.5	С222—С223—Н22С	109.2
H5B1—C5B—H5B3	109.5	C224—C223—H22D	109.2
H5B2—C5B—H5B3	109.5	C222—C223—H22D	109.2
C4B—C6B—H6B1	109.5	H22C—C223—H22D	107.9
C4B—C6B—H6B2	109.5	C223—C224—C225	111.5 (2)
H6B1—C6B—H6B2	109.5	С223—С224—Н22Е	109.3
C4B—C6B—H6B3	109.5	С225—С224—Н22Е	109.3
H6B1—C6B—H6B3	109.5	C223—C224—H22F	109.3
H6B2—C6B—H6B3	109.5	C225—C224—H22F	109.3
C112—C111—C116	118.1 (2)	H22E—C224—H22F	108
C112—C111—P1	119.38 (17)	C224—C225—C226	112.1 (2)
C116—C111—P1	122.51 (18)	C224—C225—H22G	109.2
C113—C112—C111	120.8 (2)	C226—C225—H22G	109.2
С113—С112—Н112	119.6	С224—С225—Н22Н	109.2
C111—C112—H112	119.6	С226—С225—Н22Н	109.2
C112—C113—C114	121.5 (2)	H22G—C225—H22H	107.9
C112—C113—H113	119.2	C221—C226—C225	110.6 (2)
C114—C113—H113	119.2	C221—C226—H22I	109.5
C113—C114—C115	117.7 (2)	С225—С226—Н22І	109.5
C113—C114—C1B	121.7 (7)	C221—C226—H22J	109.5
C115—C114—C1B	120.4 (7)	С225—С226—Н22Ј	109.5
C113—C114—C1A	119.0 (6)	H22I—C226—H22J	108.1
C115—C114—C1A	123.2 (6)	C236—C231—C232	110.0 (2)
C116—C115—C114	121.1 (2)	C236—C231—P2	112.07 (16)
C116—C115—H115	119.5	C232—C231—P2	110.24 (15)
C114—C115—H115	119.5	C236—C231—H231	108.1
C115—C116—C111	120.7 (2)	C232—C231—H231	108.1

С115—С116—Н116	119.6	P2-C231-H231	108.1
C111—C116—H116	119.6	C233—C232—C231	111.2 (2)
C122—C121—C126	110.4 (2)	C233—C232—H23A	109.4
C122—C121—P1	111.67 (16)	C231—C232—H23A	109.4
C126—C121—P1	109.05 (16)	С233—С232—Н23В	109.4
C122—C121—H121	108.5	C231—C232—H23B	109.4
C126—C121—H121	108.5	H23A—C232—H23B	108
P1—C121—H121	108.5	C234—C233—C232	111.6 (2)
C121—C122—C123	110.8 (2)	C234—C233—H23C	109.3
C121—C122—H12A	109.5	С232—С233—Н23С	109.3
C123—C122—H12A	109.5	C234—C233—H23D	109.3
C121—C122—H12B	109.5	C232—C233—H23D	109.3
C123—C122—H12B	109.5	H23C-C233-H23D	108
H12A—C122—H12B	108.1	C235—C234—C233	110.6 (2)
C124—C123—C122	111.3 (2)	С235—С234—Н23Е	109.5
C124—C123—H12C	109.4	С233—С234—Н23Е	109.5
C122—C123—H12C	109.4	C235—C234—H23F	109.5
C124—C123—H12D	109.4	C233—C234—H23F	109.5
C122—C123—H12D	109.4	H23E—C234—H23F	108.1
H12C—C123—H12D	108	C236—C235—C234	110.6 (2)
C125—C124—C123	110.5 (2)	C236—C235—H23G	109.5
C125—C124—H12E	109.6	C234—C235—H23G	109.5
C123—C124—H12E	109.6	С236—С235—Н23Н	109.5
C125—C124—H12F	109.6	С234—С235—Н23Н	109.5
C123—C124—H12F	109.6	H23G—C235—H23H	108.1
H12E—C124—H12F	108.1	C235—C236—C231	110.9 (2)
C124—C125—C126	111.5 (2)	C235—C236—H23I	109.5
C124—C125—H12G	109.3	C231—C236—H23I	109.5
C126—C125—H12G	109.3	С235—С236—Н23Ј	109.5
С124—С125—Н12Н	109.3	C231—C236—H23J	109.5
С126—С125—Н12Н	109.3	H23I—C236—H23J	108
H12G—C125—H12H	108	O2A—C7A—C9A	120.3 (5)
C125—C126—C121	112.1 (2)	O2A—C7A—C8A	123.8 (5)
C125—C126—H12I	109.2	C9A—C7A—C8A	115.9 (5)
C121—C126—H12I	109.2	O2B—C7B—C9B	122.3 (17)
C125—C126—H12J	109.2	O2B—C7B—C8B	122.4 (14)
C121—C126—H12J	109.2	C9B—C7B—C8B	115.1 (17)
H12I—C126—H12J	107.9	C7B—C8B—H8B1	109.5
C132—C131—C136	110.5 (2)	C7B—C8B—H8B2	109.5
C132—C131—P1	109.49 (15)	H8B1—C8B—H8B2	109.5
C136—C131—P1	115.69 (17)	C7B—C8B—H8B3	109.5
C132—C131—H131	106.9	H8B1—C8B—H8B3	109.5
C136—C131—H131	106.9	H8B2—C8B—H8B3	109.5
P1—C131—H131	106.9	C7B—C9B—H9B1	109.5
C133—C132—C131	111.0 (2)	C7B—C9B—H9B2	109.5
C133—C132—H13A	109.4	H9B1—C9B—H9B2	109.5
C131—C132—H13A	109.4	C7B—C9B—H9B3	109.5
С133—С132—Н13В	109.4	H9B1—C9B—H9B3	109.5
C131—C132—H13B	109.4	H9B2—C9B—H9B3	109.5

H13A—C132—H13B	108		
C01—Rh1—P1—C111	-34.86 (11)	C131—C132—C133—C134	-56.8 (3)
Cl—Rh1—P1—C111	145.75 (8)	C132—C133—C134—C135	55.4 (3)
C01—Rh1—P1—C121	84.08 (11)	C133—C134—C135—C136	-54.4 (3)
Cl—Rh1—P1—C121	-95.32 (8)	C134—C135—C136—C131	54.4 (3)
C01—Rh1—P1—C131	-156.08 (11)	C132—C131—C136—C135	-55.5 (3)
Cl—Rh1—P1—C131	24.52 (9)	P1-C131-C136-C135	179.40 (18)
C01—Rh1—P2—C211	38.16 (11)	C231—P2—C211—C212	156.74 (18)
Cl—Rh1—P2—C211	-142.51 (8)	C221—P2—C211—C212	-92.88 (19)
C01—Rh1—P2—C231	-81.99 (10)	Rh1—P2—C211—C212	33.4 (2)
Cl—Rh1—P2—C231	97.34 (8)	C231—P2—C211—C216	-25.4(2)
C01—Rh1—P2—C221	158.68 (11)	C221—P2—C211—C216	85.0 (2)
Cl = Rh1 = P2 = C221	-21.99(9)	Rh1—P2—C211—C216	-148.73(17)
C_{121} P1 $-C_{111}$ $-C_{112}$	-15334(18)	$C_{216} - C_{211} - C_{212} - C_{213}$	-0.2(3)
C_{131} P1 C_{111} C_{112}	95 51 (18)	P2	17777(19)
Rh1—P1—C111—C112	-31.89(19)	$C_{211} = C_{212} = C_{213} = C_{214}$	03(4)
C_{121} P_{1} C_{111} C_{116}	27.7(2)	C_{212} C_{213} C_{214} C_{215} C_{215}	0.3(4)
$C_{121} = P_1 = C_{111} = C_{116}$	-834(2)	C212 C213 C214 C213	-178 1 (6)
Ph1_P1_C111_C116	1/9 18 (17)	C_{212} C_{213} C_{214} C_{44}	-179.6(4)
$C_{116} = C_{111} = C_{112} = C_{112}$	-0.6(2)	$C_{212} = C_{213} = C_{214} = C_{4A}$	-68.4(12)
P1 C111 C112 C113	-0.0(3) -170.56(17)	$C_{0}^{0} = C_{4}^{0} = C_{2}^{14} = C_{2}^{13}$	-00.4(12)
$C_{111} = C_{112} = C_{113} = C_{114}$	-1/9.30(17) -0.2(2)	$C_{3}B_{-}C_{4}B_{-}C_{2}I_{4}^{-}C_{2}I_{5}^{-}$	112 1 (8)
$C_{112} = C_{112} = C_{114} = C_{115}$	-0.3(3)	$C_{0}^{0} = C_{4}^{0} = C_{2}^{14} = C_{2}^{15}$	113.1 (8)
$C_{112} = C_{113} = C_{114} = C_{113}$	0.2(4)	$C_{3}D - C_{4}D - C_{2}I_{4} - C_{2}I_{3}$	-112(2)
	175.0 (0)	$C_{0}D - C_{4}D - C_{2}I_{4} - C_{4}A$	-04.4(19)
C112 - C113 - C114 - C112	-1/6.1(5)	C_{3B} C_{4B} C_{214} C_{4A} C_{214} C_{4A}	/0 (3)
C2B—C1B—C114—C113	157.2(7)	$C_{5A} = C_{4A} = C_{214} = C_{213}$	98.3 (13)
C3B-CIB-CI14-CI13	-/9.9 (12)	C6A—C4A—C214—C213	-152.7(6)
C2B—CIB—CII4—CII5	-28.2(12)	C5A—C4A—C214—C215	-81.5 (14)
C3B—CIB—CII4—CII5	94.7 (10)	C6A—C4A—C214—C215	27.5 (10)
C2B—C1B—C114—C1A	84 (7)	C5A - C4A - C214 - C4B	-/8(3)
C3B—C1B—C114—C1A	-153 (9)	C6A—C4A—C214—C4B	30.5 (19)
C2A—C1A—C114—C113	110.5 (9)	C213—C214—C215—C216	-0.8 (4)
C3A—C1A—C114—C113	-128.6 (8)	C4B—C214—C215—C216	177.9 (5)
C2A—C1A—C114—C115	-65.5 (11)	C4A—C214—C215—C216	179.0 (5)
C3A—C1A—C114—C115	55.4 (9)	C212—C211—C216—C215	-0.3(3)
C2A—C1A—C114—C1B	-138 (9)	P2-C211-C216-C215	-178.19 (19)
C3A—C1A—C114—C1B	-17 (7)	C214—C215—C216—C211	0.8 (4)
C113—C114—C115—C116	0.8 (4)	C211—P2—C221—C226	-70.5 (2)
C1B-C114-C115-C116	-174.1 (6)	C231—P2—C221—C226	40.3 (2)
C1A—C114—C115—C116	176.9 (5)	Rh1—P2—C221—C226	163.22 (16)
C114—C115—C116—C111	-1.7 (4)	C211—P2—C221—C222	56.12 (19)
C112—C111—C116—C115	1.5 (3)	C231—P2—C221—C222	166.96 (17)
P1-C111-C116-C115	-179.52 (19)	Rh1—P2—C221—C222	-70.12 (18)
C111—P1—C121—C122	62.27 (18)	C226—C221—C222—C223	-59.0 (3)
C131—P1—C121—C122	172.31 (17)	P2-C221-C222-C223	171.20 (18)
Rh1—P1—C121—C122	-61.95 (17)	C221—C222—C223—C224	56.9 (3)
C111—P1—C121—C126	-175.40 (16)	C222—C223—C224—C225	-53.6 (3)
C131—P1—C121—C126	-65.36 (18)	C223—C224—C225—C226	52.6 (3)
Rh1—P1—C121—C126	60.38 (17)	C222—C221—C226—C225	58.3 (3)

C126—C121—C122—C123	55.1 (3)	P2-C221-C226-C225	-174.83 (19)
P1-C121-C122-C123	176.66 (18)	C224—C225—C226—C221	-55.0 (3)
C121—C122—C123—C124	-57.7 (3)	C211—P2—C231—C236	-62.33 (19)
C122—C123—C124—C125	57.6 (3)	C221—P2—C231—C236	-172.02 (17)
C123—C124—C125—C126	-55.8 (3)	Rh1—P2—C231—C236	63.03 (18)
C124—C125—C126—C121	54.6 (3)	C211—P2—C231—C232	174.74 (16)
C122—C121—C126—C125	-53.9 (3)	C221—P2—C231—C232	65.04 (18)
P1-C121-C126-C125	-176.98 (18)	Rh1—P2—C231—C232	-59.91 (17)
C111—P1—C131—C132	-64.11 (18)	C236—C231—C232—C233	55.3 (3)
C121—P1—C131—C132	-175.22 (16)	P2-C231-C232-C233	179.41 (17)
Rh1—P1—C131—C132	62.54 (17)	C231—C232—C233—C234	-55.1 (3)
C111—P1—C131—C136	61.5 (2)	C232—C233—C234—C235	55.7 (3)
C121—P1—C131—C136	-49.6 (2)	C233—C234—C235—C236	-57.2 (3)
Rh1-P1-C131-C136	-171.83 (16)	C234—C235—C236—C231	58.4 (3)
C136—C131—C132—C133	56.8 (3)	C232—C231—C236—C235	-57.2 (3)
P1-C131-C132-C133	-174.60 (17)	P2-C231-C236-C235	179.80 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C131—H131···Cl	1.00	2.76	3.332 (2)	117.
C221—H221···Cl	1.00	2.67	3.324 (2)	123.
C224— $H22E$ ···O1 ⁱ	0.99	2.70	3.359 (3)	124.
Symmetry codes: (i) $-y+1/2$, $x-1/2$, $z-1/4$.				

Fig. 1